21.6 C
New York
Thursday, August 21, 2025

Construct information pipelines with dbt in Amazon Redshift utilizing Amazon MWAA and Cosmos


Efficient collaboration and scalability are important for constructing environment friendly information pipelines. Nevertheless, information modeling groups typically face challenges with advanced extract, rework, and cargo (ETL) instruments, requiring programming experience and a deep understanding of infrastructure. This complexity can result in operational inefficiencies and challenges in sustaining information high quality at scale.

dbt addresses these challenges by offering an easier strategy the place information groups can construct strong information fashions utilizing SQL, a language they’re already aware of. When built-in with fashionable growth practices, dbt tasks can use model management for collaboration, incorporate testing for information high quality, and make the most of reusable elements by way of macros. dbt additionally mechanically manages dependencies, ensuring information transformations execute within the appropriate sequence.

On this publish, we discover a streamlined, configuration-driven strategy to orchestrate dbt Core jobs utilizing Amazon Managed Workflows for Apache Airflow (Amazon MWAA) and Cosmos, an open supply package deal. These jobs run transformations on Amazon Redshift, a totally managed information warehouse that allows quick, scalable analytics utilizing commonplace SQL. With this setup, groups can collaborate successfully whereas sustaining information high quality, operational effectivity, and observability. Key steps coated embrace:

  • Making a pattern dbt challenge
  • Enabling auditing throughout the dbt challenge to seize runtime metrics for every mannequin
  • Making a GitHub Actions workflow to automate deployments
  • Organising Amazon Easy Notification Service (Amazon SNS) to proactively alert on failures

These enhancements allow model-level auditing, automated deployments, and real-time failure alerts. By the top of this publish, you should have a sensible and scalable framework for operating dbt Core jobs with Cosmos on Amazon MWAA, so your crew can ship dependable information workflows quicker.

Resolution overview

The next diagram illustrates the answer structure.

The workflow accommodates the next steps:

  1. Analytics engineers handle their dbt challenge of their model management instrument. On this publish, we use GitHub for instance.
  2. We configure an Apache Airflow Directed Acyclic Graph (DAG) to make use of the Cosmos library to create an Airflow job group that accommodates all of the dbt fashions as a part of the dbt challenge.
  3. We use a GitHub Actions workflow to sync the dbt challenge recordsdata and the DAG to an Amazon Easy Storage Service (Amazon S3) bucket.
  4. In the course of the DAG run, dbt converts the fashions, exams, and macros to Amazon Redshift SQL statements, which run immediately on the Redshift cluster.
  5. If a job within the DAG fails, the DAG invokes an AWS Lambda perform to ship out a notification utilizing Amazon SNS.

Stipulations

You have to have the next conditions:

Create a dbt challenge

A dbt challenge is structured to facilitate modular, scalable, and maintainable information transformations. The next code is a pattern dbt challenge construction that this publish will observe:

MY_SAMPLE_DBT_PROJECT
├── .github
│   └── workflows
│       └── publish_assets.yml
└── src
    ├── dags
    │   └── dbt_sample_dag.py
    └── my_sample_dbt_project
        ├── macros
        ├── fashions
        └── dbt_project.yml

dbt makes use of the next YAML recordsdata:

  • dbt_project.yml –  Serves as the primary configuration on your challenge. Objects on this challenge will inherit settings outlined right here except overridden on the mannequin stage. For instance:
# Title your challenge! Undertaking names ought to comprise solely lowercase characters
# and underscores. 
title: 'my_sample_dbt_project'
model: '1.0.0'

# These configurations specify the place dbt ought to search for various kinds of recordsdata.
# The `model-paths` config, for instance, states that fashions on this challenge may be
# discovered within the "fashions/" listing. 
model-paths: ["models"]
macro-paths: ["macros"]

# Configuring fashions
# Full documentation: https://docs.getdbt.com/docs/configuring-models
# On this instance config, we inform dbt to construct fashions within the instance/
# listing as views. These settings may be overridden within the particular person mannequin
# recordsdata utilizing the `%- if parsed_results ` macro.
fashions:
  my_sample_dbt_project:
    # Config indicated by + and applies to recordsdata below fashions/instance/
    instance:
      +materialized: view
      
on-run-end:
# add run outcomes to audit desk 
  - " substitute("'", "''") %" 

  • sources.yml – Defines the exterior information sources that your dbt fashions will reference. For instance:
sources:
  - title: sample_source
    database: sample_database
    schema: sample_schema
    tables:
      - title: sample_table

  • schema.yml – Outlines the schema of your fashions and information high quality exams. Within the following instance, we’ve got outlined two columns, full_name for the mannequin model1 and sales_id for model2. We have now declared them as the first key and outlined information high quality exams to test if the 2 columns are distinctive and never null.
model: 2

fashions:
  - title: model1
    config: 
      contract: %- if parsed_results 

    columns:
      - title: full_name
        data_type: varchar(100)
        constraints:
          - kind: primary_key
        exams:
          - distinctive
          - not_null

  - title: model2
    config: 
      contract: % set sanitized_value = worth 

    columns:
      - title: sales_id
        data_type: varchar(100)
        constraints:
          - kind: primary_key
        exams:
          - distinctive
          - not_null

Allow auditing inside dbt challenge

Enabling auditing inside your dbt challenge is essential for facilitating transparency, traceability, and operational oversight throughout your information pipeline. You possibly can seize run metrics on the mannequin stage for every execution in an audit desk. By capturing detailed run metrics reminiscent of load identifier, runtime, and variety of rows affected, groups can systematically monitor the well being and efficiency of every load, rapidly determine points, and hint modifications again to particular runs.

The audit desk consists of the next attributes:

  • load_id – An identifier for every mannequin run executed as a part of the load
  • database_name – The title of the database inside which information is being loaded
  • schema_name – The title of the schema inside which information is being loaded
  • title – The title of the item inside which information is being loaded
  • resource_type – The kind of object to which information is being loaded
  • execution_time – The time length taken for every dbt mannequin to finish execution as a part of every load
  • rows_affected – The variety of rows affected within the dbt mannequin as a part of the load

Full the next steps to allow auditing inside your dbt challenge:

  1. Navigate to the fashions listing (src/my_sample_dbt_project/fashions) and create the audit_table.sql mannequin file:
%- if parsed_results 
{% set sanitized_value = worth }

with empty_table as (
    choose
        'test_load_id'::varchar(200) as load_id,
        'test_invocation_id'::varchar(200) as invocation_id,
        'test_database_name'::varchar(200) as database_name,
        'test_schema_name'::varchar(200) as schema_name,
        'test_model_name'::varchar(200) as title,
        'test_resource_type'::varchar(200) as resource_type,
        'test_status'::varchar(200) as standing,
        solid('12122012' as float) as execution_time,
        solid('100' as int) as rows_affected,
        {{run_date}} as model_execution_date
)

choose * from empty_table
-- This can be a filter so we are going to by no means really insert these values
the place 1 = 0

  1. Navigate to the macros listing (src/my_sample_dbt_project/macros) and create the parse_dbt_results.sql macro file:
{% macro parse_dbt_results(outcomes) %}
    -- Create an inventory of parsed outcomes
    {%- set parsed_results = [] %}
    -- Flatten outcomes and add to record
    {% for run_result in outcomes %}
        -- Convert the run outcome object to a easy dictionary
        {% set run_result_dict = run_result.to_dict() %}
        -- Get the underlying dbt graph node that was executed
        {% set node = run_result_dict.get('node') %}
        {% set rows_affected = run_result_dict.get(
        'adapter_response', {}).get('rows_affected', 0) %}
        {%- if not rows_affected -%}
            {% set rows_affected = 0 %}
        {%- endif -%}
        {% set parsed_result_dict = {
                'load_id': invocation_id ~ '.' ~ node.get('unique_id'),
                'invocation_id': invocation_id,
                'database_name': node.get('database'),
                'schema_name': node.get('schema'),
                'title': node.get('title'),
                'resource_type': node.get('resource_type'),
                'standing': run_result_dict.get('standing'),
                'execution_time': run_result_dict.get('execution_time'),
                'rows_affected': rows_affected
                }%}
        {% do parsed_results.append(parsed_result_dict) %}
    {% endfor %}
    {{ return(parsed_results) }}
{% endmacro %}

  1. Navigate to the macros listing (src/my_sample_dbt_project/macros) and create the log_audit_table.sql macro file:
{% macro log_audit_table(outcomes) %}
    -- depends_on: {{ ref('audit_table') }}
    {%- if execute -%}
        {{ print("Working log_audit_table Macro") }}
        {%- set run_date = "CURRENT_DATE" -%}
        {%- set parsed_results = parse_dbt_results(outcomes) -%}
         size  > 0 -%
            {% set allowed_columns = ['load_id', 'invocation_id', 'database_name', 
            'schema_name', 'name', 'resource_type', 'status', 'execution_time', 
            'rows_affected', 'model_execution_date'] -%}
            {% set insert_dbt_results_query -%}
                insert into {{ ref('audit_table') }}
                    (
                        load_id,
                        invocation_id,
                        database_name,
                        schema_name,
                        title,
                        resource_type,
                        standing,
                        execution_time,
                        rows_affected,
                        model_execution_date
                ) values
                    {%- for parsed_result_dict in parsed_results -%}
                        (
                            {%- for column, worth in parsed_result_dict.objects() %}
                                {% if column not in allowed_columns %}
                                    {{ exceptions.raise_compiler_error("Invalid
                                     column") }}
                                {% endif %}
                                 substitute("'", "''") %
                                '{{ sanitized_value }}'
                                {%- if not loop.final %}, {% endif %}
                            {%- endfor -%}
                        )
                        {%- if not loop.final %}, {% endif %}
                    {%- endfor -%}
            {%- endset -%}
            {%- do run_query(insert_dbt_results_query) -%}
        {%- endif -%}
    {%- endif -%}
    {{ return ('') }}
{% endmacro %}

  1. Append the next traces to the dbt_project.yml file:
on-run-end:
  - "{{ log_audit_table(outcomes) }}" 

Create a GitHub Actions workflow

This step is elective. When you choose, you possibly can skip it and as a substitute add your recordsdata on to your S3 bucket.

The next GitHub Actions workflow automates the deployment of dbt challenge recordsdata and DAG file to Amazon S3. Exchange the placeholders {s3_bucket_name}, {account_id}, {role_name}, and {area} along with your S3 bucket title, account ID, IAM position title, and AWS Area within the workflow file.

To reinforce safety, it’s beneficial to make use of OpenID Join (OIDC) for authentication with IAM roles in GitHub Actions as a substitute of counting on long-lived entry keys.

title: Sync dbt Undertaking with S3

on:
  workflow_dispatch:
  push:
    branches: [ main ]
    paths:
      - "src/**"

permissions:
  id-token: write   # That is required for requesting the JWT
  contents: learn    # That is required for actions/checkout
  pull-requests: write

jobs:
  sync-dev:
    runs-on: ubuntu-latest
    surroundings: dev
    defaults:
      run:
        shell: bash
    steps:
      - makes use of: actions/checkout@v4
      - title: Assume AWS IAM Function
        makes use of: aws-actions/configure-aws-credentials@v4.0.2
        with:
          aws-region: {area}
          role-to-assume: arn:aws:iam::{account_id}:position/{role_name}
          role-session-name: my_sample_dbt_project_${{ github.run_id }}
          role-duration-seconds: 3600 # 1 hour

      - run: aws sts get-caller-identity

      - title: Sync dbt Mannequin recordsdata
        id: dbt_project_files
        working-directory: src/my_sample_dbt_project
        run: aws s3 sync . s3://{s3_bucket_name}/dags/dbt/my_sample_dbt_project 
        --delete
        continue-on-error: false

      - title: Sync DAG recordsdata
        id: dag_file
        working-directory: src/dags
        run: aws s3 sync . s3://{s3_bucket_name}/dags

GitHub has the next safety necessities:

  • Department safety guidelines – Earlier than continuing with the GitHub Actions workflow, ensure that department safety guidelines are in place. These guidelines implement required standing checks earlier than merging code into protected branches (reminiscent of fundamental).
  • Code evaluate tips – Implement code evaluate processes to verify modifications endure evaluate. This could embrace requiring at the least one approving evaluate earlier than code is merged into the protected department.
  • Incorporate safety scanning instruments – This may help detect vulnerabilities in your repository.

Be sure you are additionally adhering to dbt-specific safety greatest practices:

  • Take note of dbt macros with variables and validate their inputs.
  • When including new packages to your dbt challenge, consider their safety, compatibility, and upkeep standing to verify they don’t introduce vulnerabilities or conflicts into your challenge.
  • Overview dynamically generated SQL to safeguard in opposition to points like SQL injection.

Replace the Amazon MWAA occasion

Full the next steps to replace the Amazon MWAA occasion:

  1. Set up the Cosmos library on Amazon MWAA by including astronomer-cosmos within the necessities.txt file. Be certain to test for model compatibility for Amazon MWAA and the Cosmos library.
  2. Add the next entries in your startup.sh script:
    1. Within the following code, DBT_VENV_PATH specifies the situation the place the Python digital surroundings for dbt shall be created. DBT_PROJECT_PATH factors to the situation of your dbt challenge inside Amazon MWAA.
      #!/bin/sh
      export DBT_VENV_PATH="${AIRFLOW_HOME}/dbt_venv"
      export DBT_PROJECT_PATH="${AIRFLOW_HOME}/dags/dbt"

    2. The next code creates a Python digital surroundings on the path ${DBT_VENV_PATH} and installs the dbt-redshift adapter to run dbt transformations on Amazon Redshift:
      python3 -m venv "${DBT_VENV_PATH}"
      ${DBT_VENV_PATH}/bin/pip set up dbt-redshift

Create a dbt consumer in Amazon Redshift and retailer credentials

To create dbt fashions in Amazon Redshift, you have to arrange a local Redshift consumer with the mandatory permissions to entry supply tables and create new tables. It’s important to create separate database customers with minimal permissions to observe the precept of least privilege. The dbt consumer shouldn’t be granted admin privileges, as a substitute, it ought to solely have entry to the particular schemas required for its duties.

Full the next steps:

  1. Open the Amazon Redshift console and join as an admin (for extra particulars, confer with Connecting to an Amazon Redshift database).
  2. Run the next command within the question editor v2 to create a local consumer, and be aware down the values for dbt_user_name and password_value:
    create consumer {dbt_user_name} password 'sha256|{password_value}';

  3. Run the next instructions within the question editor v2 to grant permissions to the native consumer:
    1. Connect with the database the place you wish to supply tables from and run the next instructions:
      grant utilization on schema {schema_name} to {dbt_user_name};
      grant choose on all tables in schema {schema_name} to {dbt_user_name};

    2. To permit the consumer to create tables inside a schema, run the next command:
      grant create on schema {schema_name} to {dbt_user_name};

  4. Optionally, create a secret in AWS Secrets and techniques Supervisor and retailer the values for dbt_user_name and password_value from the earlier step as plaintext:
{
    "username":"dbt_user_name",
    "password":"password_value"
}

Making a Secrets and techniques Supervisor entry is elective, however beneficial for securely storing your credentials as a substitute of hardcoding them. To study extra, confer with AWS Secrets and techniques Supervisor greatest practices.

Create a Redshift connection in Amazon MWAA

We create one Redshift connection in Amazon MWAA for every Redshift database, ensuring that every information pipeline (DAG) can solely entry one database. This strategy supplies distinct entry controls for every pipeline, serving to forestall unauthorized entry to information. Full the next steps:

  1. Log in to the Amazon MWAA UI.
  2. On the Admin menu, select Connections.
  3. Select Add a brand new file.
  4. For Connection Id, enter a reputation for this connection.
  5. For Connection Sort, select Amazon Redshift.
  6. For Host, enter the endpoint of the Redshift cluster with out the port and database title (for instance, redshift-cluster-1.xxxxxx.us-east-1.redshift.amazonaws.com).
  7. For Database, enter the database of the Redshift cluster.
  8. For Port, enter the port of the Redshift cluster.

Arrange an SNS notification

Organising SNS notifications is elective, however they could be a helpful enhancement to obtain alerts on failures. Full the next steps:

  1. Create an SNS matter.
  2. Create a subscription to the SNS matter.
  3. Create a Lambda perform with the Python runtime.
  4. Modify the perform code in your Lambda perform, and substitute {topic_arn} along with your SNS matter Amazon Useful resource Title (ARN):
import json

sns_client = boto3.consumer('sns')

def lambda_handler(occasion, context):
     strive:
        # Extract DAG title from occasion
        failed_dag = occasion['dag_name']
        
        # Ship notification 
        sns_client.publish(
            TopicArn={topic_arn}, 
            Topic="Knowledge modelling dags - WARNING", 
            Message=json.dumps({'default': json.dumps(f"Knowledge modelling DAG - 
            {failed_dag} has failed, please inform the information modelling crew")}),
            MessageStructure="json"
        )
        
    besides KeyError as e:
        # Deal with lacking 'dag_name' within the occasion
        logger.error(f"KeyError: invalid payload - dag_name not current")

Configure a DAG

The next pattern DAG orchestrates a dbt workflow for processing and auditing information fashions in Amazon Redshift. It retrieves credentials from Secrets and techniques Supervisor, runs dbt duties in a digital surroundings, and sends an SNS notification if a failure happens. The workflow consists of the next steps:

  1. It begins with the audit_dbt_task job group, which creates the audit mannequin.
  2. The transform_data job group executes the opposite dbt fashions, excluding the audit-tagged one. Contained in the transform_data group, there are two dbt fashions, model1 and model2, and every is adopted by a corresponding check job that runs information high quality exams outlined within the schema.yml file.
  3. To correctly detect and deal with failures, the DAG features a dbt_check Python job that runs a customized perform, check_dbt_failures. That is vital as a result of when utilizing DbtTaskGroup, particular person model-level failures contained in the group don’t mechanically propagate to the duty group stage. Consequently, downstream duties (such because the Lambda operator sns_notification_for_failure) configured with trigger_rule="one_failed" is not going to be triggered except a failure is explicitly raised.

The check_dbt_failures perform addresses this by inspecting the outcomes of every dbt mannequin and check, and elevating an AirflowException if a failure is discovered. When an AirflowException is raised, the sns_notification_for_failure job is triggered.

  1. If a failure happens, the sns_notification_for_failure job invokes a Lambda perform to ship an SNS notification. If no failures are detected, this job is skipped.

The next diagram illustrates this workflow.

Configure DAG variables

To customise this DAG on your surroundings, configure the next variables:

  • project_name – Be certain the project_name matches the S3 prefix of your dbt challenge
  • secret_name – Present the title of the key that shops dbt consumer credentials
  • target_database and target_schema – Replace these variables to mirror the place you wish to land your dbt fashions in Amazon Redshift
  • redshift_connection_id – Set this to match the connection configured in Amazon MWAA for this Redshift database
  • sns_lambda_function_name – Present the Lambda perform title to ship SNS notifications
  • dag_name – Present the DAG title that shall be handed to the SNS notification Lambda perform
import os
import json
import boto3
from airflow import DAG
from cosmos import (
    DbtTaskGroup, ProfileConfig, ProjectConfig,
    ExecutionConfig, RenderConfig
)
from cosmos.constants import ExecutionMode, LoadMode
from cosmos.profiles import RedshiftUserPasswordProfileMapping
from pendulum import datetime
from airflow.operators.python_operator import PythonOperator
from airflow.suppliers.amazon.aws.operators.lambda_function import (
    LambdaInvokeFunctionOperator
)
from airflow.exceptions import AirflowException

# challenge title - ought to match the s3 prefix of your dbt challenge
project_name = "my_sample_dbt_project"
# title of the key that shops dbt consumer credentials 
secret_name = "dbt_user_credentials_secret"
# goal database to land dbt fashions
target_database = "sample_database"
# goal schema to land dbt fashions
target_schema = "sample_schema"
# Redshift connection title from MWAA
redshift_connection_id = "my_sample_dbt_project_connection"
# sns lambda perform title
sns_lambda_function_name = "sns_notification"
# dag title - this shall be handed to SNS for notification
payload = json.dumps({
            "dag_name": "my_sample_dbt_project_dag"
        })

Incorporate DAG elements

After setting the variables, now you can incorporate the next elements to finish the DAG.

Secrets and techniques Supervisor

The DAG retrieves dbt consumer credentials from Secrets and techniques Supervisor:

sm_client = boto3.consumer('secretsmanager')

def get_secret(secret_name):
    strive:
        get_secret_value_response = sm_client.get_secret_value(SecretId=secret_name)
        return json.masses(get_secret_value_response["SecretString"])
    besides Exception as e:
        elevate

secret_value = get_secret(secret_name)
username = secret_value["username"]
password = secret_value["password"]

Redshift connection configuration

It makes use of RedshiftUserPasswordProfileMapping to authenticate:

profile_config = ProfileConfig(
    profile_name="redshift",
    target_name=target_database,
    profile_mapping=RedshiftUserPasswordProfileMapping(
        conn_id=redshift_connection_id,
        profile_args={"schema": target_schema,
                      "consumer": username, "password": password}
    ),
)

dbt execution setup

This code accommodates the next variables:

  • dbt executable path – Makes use of a digital surroundings
  • dbt challenge path – Is positioned within the surroundings variable DBT_PROJECT_PATH below your challenge
execution_config = ExecutionConfig(
    dbt_executable_path=f"{os.environ['DBT_VENV_PATH']}/bin/dbt",
    execution_mode=ExecutionMode.VIRTUALENV,
)

project_config = ProjectConfig(
    dbt_project_path=f"{os.environ['DBT_PROJECT_PATH']}/{project_name}",
)

Duties and execution circulate

This step consists of the next elements:

  • Audit dbt job group (audit_dbt_task) – Runs the dbt mannequin tagged with audit
  • dbt job group (transform_data) – Runs the dbt fashions tagged with operations, excluding the audit mannequin

In dbt, tags are labels you could assign to fashions, exams, seeds, and different dbt sources to prepare and selectively run subsets of your dbt challenge. In your render_config, you might have exclude=["tag:audit"]. This implies dbt will exclude fashions which have the tag audit, as a result of the audit mannequin runs individually.

  • Failure test (dbt_check) – Checks for dbt mannequin failures, raises an AirflowException if upstream dbt duties fail
  • SNS notification on failure (sns_notification_for_failure) – Invokes a Lambda perform to ship an SNS notification upon a dbt job failure (for instance, a dbt mannequin within the job group)
def check_dbt_failures(**kwargs):
    if kwargs['ti'].state == 'failed':
        elevate AirflowException('Failure in dbt job group')

with DAG(
    dag_id="my_sample_dbt_project_dag",
    start_date=datetime(2025, 4, 2),
    schedule_interval="@each day",
    catchup=False,
    tags=["dbt"]
):

    audit_dbt_task = DbtTaskGroup(
        group_id="audit_dbt_task",
        execution_config=execution_config,
        profile_config=profile_config,
        project_config=project_config,
        operator_args={
            "install_deps": True,
        },
        render_config= RenderConfig(
            choose=["tag:audit"],
            load_method=LoadMode.DBT_LS
        )
    )

    transform_data = DbtTaskGroup(
        group_id="transform_data",
        execution_config=execution_config,
        profile_config=profile_config,
        project_config=project_config,
        operator_args={
            "install_deps": True,
            # set up needed dependencies earlier than operating dbt command
        },
        render_config= RenderConfig(
            exclude=["tag:audit"],
            load_method=LoadMode.DBT_LS
        )
    )

    dbt_check = PythonOperator(
        task_id='dbt_check', 
        python_callable=check_dbt_failures,
        provide_context=True,
    )

    sns_notification_for_failure = LambdaInvokeFunctionOperator(
        task_id="sns_notification_for_failure",
        function_name=sns_lambda_function_name,
        payload=payload,
        trigger_rule="one_failed"
    )

    audit_dbt_task >> transform_data >> dbt_check >> sns_notification_for_failure

The pattern dbt orchestrates a dbt workflow in Amazon Redshift, beginning with an audit job and adopted by a job group that processes information fashions. It features a failure dealing with mechanism that checks for failures and raises an exception to set off an SNS notification utilizing Lambda if a failure happens. If no failures are detected, the SNS notification job is skipped.

Clear up

When you not want the sources you created, delete them to keep away from further costs. This consists of the next:

  • Amazon MWAA surroundings
  • S3 bucket
  • IAM position
  • Redshift cluster or serverless workgroup
  • Secrets and techniques Supervisor secret
  • SNS matter
  • Lambda perform

Conclusion

By integrating dbt with Amazon Redshift and orchestrating workflows utilizing Amazon MWAA and the Cosmos library, you possibly can simplify information transformation workflows whereas sustaining strong engineering practices. The pattern dbt challenge construction, mixed with automated deployments by way of GitHub Actions and proactive monitoring utilizing Amazon SNS, supplies a basis for constructing dependable information pipelines. The addition of audit logging facilitates transparency throughout your transformations, so groups can keep excessive information high quality requirements.

You should use this resolution as a place to begin on your personal dbt implementation on Amazon MWAA. The strategy we outlined emphasizes SQL-based transformations whereas incorporating important operational capabilities like deployment automation and failure alerting. Get began by adapting the configuration to your surroundings, and construct upon these practices as your information wants evolve.

For extra sources, confer with Handle information transformations with dbt in Amazon Redshift and Redshift setup.


In regards to the authors

Cindy Li is an Affiliate Cloud Architect at AWS Skilled Providers, specialising in Knowledge Analytics. Cindy works with clients to design and implement scalable information analytics options on AWS. When Cindy just isn’t diving into tech, you will discover her out on walks along with her playful toy poodle Mocha.

Akhil B is a Knowledge Analytics Advisor at AWS Skilled Providers, specializing in cloud-based information options. He companions with clients to design and implement scalable information analytics platforms, serving to organizations rework their conventional information infrastructure into fashionable, cloud-based options on AWS. His experience helps organizations optimize their information ecosystems and maximize enterprise worth by way of fashionable analytics capabilities.

Joao Palma is a Senior Knowledge Architect at Amazon Net Providers, the place he companions with enterprise clients to design and implement complete information platform options. He focuses on serving to organizations rework their information into strategic enterprise belongings and enabling data-driven resolution making.

Harshana Nanayakkara is a Supply Advisor at AWS Skilled Providers, the place he helps clients deal with advanced enterprise challenges utilizing AWS Cloud expertise. He focuses on information and analytics, information governance, and AI/ML implementations.

Related Articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Stay Connected

0FansLike
0FollowersFollow
0SubscribersSubscribe
- Advertisement -spot_img

Latest Articles